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A B S T R A C T   

Osteoarthritis (OA) is one of the fast-growing disability-related diseases worldwide, which has significantly 
affected the quality of patients’ lives and brings about substantial socioeconomic burdens in medical expendi-
ture. There is currently no cure for OA once the bone damage is established. Unfortunately, the existing 
radiological examination is limited to grading the disease’s severity and is insufficient to precisely diagnose OA, 
detect early OA or predict OA progression. Therefore, there is a pressing need to develop novel approaches in 
medical image analysis to detect subtle changes for identifying early OA development and rapid progressors. 
Recently, radiomics has emerged as a unique approach to extracting high-dimensional imaging features that 
quantitatively characterise visible or hidden information from routine medical images. Radiomics data mining 
via machine learning has empowered precise diagnoses and prognoses of disease, mainly in oncology. Mounting 
evidence has shown its great potential in aiding the diagnosis and contributing to the study of musculoskeletal 
diseases. This paper will summarise the current development of radiomics at the crossroads between engineering 
and medicine and discuss the application and perspectives of radiomics analysis for OA diagnosis and prognosis. 
The translational potential of this article: Radiomics is a novel approach used in oncology, and it may also play an 
essential role in the diagnosis and prognosis of OA. By transforming medical images from qualitative interpre-
tation to quantitative data, radiomics could be the solution for precise early OA detection, progression tracking, 
and treatment efficacy prediction. Since the application of radiomics in OA is still in the early stages and pri-
marily focuses on fundamental studies, this review may inspire more explorations and bring more promising 
diagnoses, prognoses, and management results of OA.   

1. Unmet need in the precise diagnosis of osteoarthritis 

Osteoarthritis (OA) is a prevalent chronic degenerative joint disease 
mainly affecting the loading-bearing joints such as the knee and hip. It is 
one of the leading causes of chronic pain and disability in older adults. 
With the population ageing and obesity pandemic, the prevalence of 
knee OA has doubled since the mid-20th century [1]. Nowadays, over 
500 million people worldwide suffer from OA, causing a heavy socio-
economic burden [2]. 

Medical images play a crucial role in the diagnosis and prognosis of 
OA patients. They can be captured through multiple modalities, such as 
X-ray, computed tomography (CT), and magnetic resonance imaging 
(MRI). However, each modality has its own strengths and weaknesses in 
detecting OA [3]. For example, X-ray is a convenient and cost-effective 

imaging tool for clinically diagnosing radiographic OA, but it is a 2D 
projection with overlapping signals. It also fails to provide any infor-
mation on cartilage. A CT scan can accurately display bone structures in 
3D, but similar to X-ray, it cannot reflect soft tissues. Besides, the high 
dose of radiation prevents its application for early screening. MRI is a 
powerful imaging modality that has superior contrasts on soft tissues. 
However, routine MRI is less feasible due to its high cost and low 
accessibility. In addition, artifacts such as distortions in bone structure 
may limit its accuracy. 

Although joint space narrowing, osteophytes, and subchondral bone 
changes are considered radiographic evidence of OA routinely, these 
findings are present in the late stage of the disease [4]. Furthermore, 
research reveals a considerable portion of mismatch between radio-
graphic OA and symptomatic OA; radiographic evidence of OA does not 

* Corresponding author. Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China. 
E-mail address: chunyi.wen@polyu.edu.hk (C. Wen).   

1 These authors contributed equally to this work. 

Contents lists available at ScienceDirect 

Journal of Orthopaedic Translation 

journal homepage: www.journals.elsevier.com/journal-of-orthopaedic-translation 

https://doi.org/10.1016/j.jot.2023.10.003 
Received 28 April 2023; Received in revised form 5 October 2023; Accepted 10 October 2023   

mailto:chunyi.wen@polyu.edu.hk
www.sciencedirect.com/science/journal/2214031X
https://www.journals.elsevier.com/journal-of-orthopaedic-translation
https://doi.org/10.1016/j.jot.2023.10.003
https://doi.org/10.1016/j.jot.2023.10.003
https://doi.org/10.1016/j.jot.2023.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jot.2023.10.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Orthopaedic Translation 45 (2024) 100–106

101

guarantee to be the source of OA’s symptoms, and the absence of 
radiographic abnormality does not rule out the possibility of symp-
tomatic disease [4,5]. Clinical practitioner, therefore, heavily relies on 
medical history and physical assessments while diagnosing OA [6], and 
the result could vary greatly depending on individuals’ experiences and 
interpretations. 

In the era of precision medicine, radiomics presents a promising 
solution for precision OA diagnosis by transforming medical images 
from qualitative interpretation to quantitative data. Radiomics can 
extract thousands of quantitative features from medical images that are 
not readily apparent to the naked eye. These features will be analysed by 
machine learning models to distinguish different types and stages of OA. 
This approach may reveal hidden patterns and detect subtle changes, 
which holds promise for detecting early OA, tracking its progression, 
and assessing treatment effectiveness. 

2. Radiomics’ origins and evolving applications 

2.1. Brief history of radiomics 

Radiomics is a rapidly growing field featuring quantitative analysis 
of medical images. The concept was first introduced by Lambin et al., in 
2012 when they proposed a new framework for advanced medical image 
analysis in oncology that involved extracting a large number of quan-
titative image features [7]. As an “omics” approach, radiomics leverages 
multi-perspective quantitative analysis based on various image charac-
terisation algorithms, and the high-dimensional information obtained is 
usually analysed using machine learning techniques [8]. Over the past 
decade, radiomics has gained widespread popularity in oncology 
research due to the growing availability of high-quality shared data-
bases, advancements in machine learning and deep learning algorithms, 
and increased access to high-performance computational hardware. 
Furthermore, it has demonstrated promising potential as a tool for 
precision medicine, with the ability to support accurate diagnosis, 
prognosis, and predictions of therapeutic outcomes [9]. 

2.2. Radiomics analysis pipeline 

A typical radiomics analysis pipeline includes several steps, 
including image acquisition, image pre-processing, segmentation, 
feature extraction, dimension reduction, and model development, as 
shown in Fig. 1. Radiomics analysis can be performed on medical images 
acquired using various modalities, such as X-ray, CT, and MRI. Due to 
the heterogeneous image acquisition parameters in a clinical setting, 
image pre-processing procedures such as resolution harmonisation and 
intensity normalisation are preferred to improve reproducibility and 
stability. Segmentation defines the region of interest (ROI) in 2D images 
or volume of interest (VOI) in 3D images for feature extraction. It can be 
either conducted manually or by automatic segmentation tools. Pre- 
defined radiomics features are then calculated within the VOI/ROI 
from either original or filtered images (e.g., Laplacian of Gaussian, 
wavelet filters). 

Various classes of radiomics features have been proposed and 
standardised by the Imaging Biomarker Standardization Initiative (IBSI) 
in 2016 [10]. They include shape-based features describing the size and 
shape of the VOI/ROI, first-order features describing histogram-based 
statistics of voxel intensity, gray level co-occurrence matrix describing 
the probability of similar pixels joining together, gray level run length 
matrix describing the length of consecutive pixels of the same grey level, 
gray level size zone matrix describing the number of connected voxels 
with the same grey level intensity that forms grey level zones, gray-tone 
difference matrix describing the texture from fractal properties to 
quantify the difference between a gray value and the average among 
neighbouring voxels, and gray level dependence matrix measuring grey 
level dependency on the centre voxel of voxels in a region. The number 
of features extracted can exceed one thousand, leading to a much higher 
dimensionality than the sample size. As a result, feature selection or 
dimension reduction techniques using machine learning or statistical 
methods are necessary to reduce redundancy and avoid false discov-
eries. The selected independent and informative radiomics features are 
combined with a mathematical model for the final classification or 
regression task. 

Figure 1. Overview of radiomics analysis framework.  
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Moreover, a well-designed radiomics analysis shall take multiple 
factors into consideration to ensure the successful application of radio-
mics. Variability in image acquisition parameters, such as imaging 
protocols and scanners, can introduce inconsistencies in the extracted 
radiomic features for the same disease condition. The reproducibility of 
feature extraction is also influenced by algorithm robustness, manual or 
automatic segmentation accuracy, and parameter choices related to 
preprocessing settings, algorithmic thresholds, and segmentation 
criteria. Additionally, data quality issues like image artifacts and noise, 
along with institutional variabilities, can affect the reliability of radio-
mic features. The establishment of comprehensive guidelines with 
standardized protocols for each procedure of the radiomics pipeline 
shall facilitate result comparison and foster the clinical applicability of 
radiomics analysis [11]. 

While a typical radiomics analysis follows the analysis pipeline 
mentioned above, this review will use a broader definition and consider 
quantitative analysis involving any mathematically defined features 
extracted from medical imaging as radiomics. 

2.3. Evolving applications of radiomics 

Radiomics’ high-throughput extraction of image features enables 
data mining from a significant amount of information regarding the 
disease presentation in medical images, a large portion of which could 
be unique from the results of clinical assessments and laboratory tests 
[12]. Such independent information may improve prognosis and ther-
apeutic response predictions, leading to personalised treatment plans 
and more efficient clinical workflows. As a result, radiomics is utilised to 
build automated pipelines to assist clinical decision-making on various 
diseases. Radiomics has been extensively investigated in the field of 
oncology [13], encompassing the diagnosis of cancers in diverse body 
tissues, prognostication of recurrence risk, patient survival, metastatic 
potential, treatment response, the prediction of molecular characteris-
tics among cancer patients, and even treatment planning [14,15]. 
Excitingly, diseases beyond cancer have begun to witness active explo-
ration, such as coronavirus disease 2019 [16], cardiovascular disease 
[17], liver fibrosis [18], and OA. 

Presently, OA in medical images is analysed using clinically pre- 
defined features like the Kellgren and Lawrence Grade (KL Grade), 
MRI Osteoarthritis Knee Score (MOAKS), or Whole-organ magnetic 
resonance imaging score (WORMS). Based on radiographic measure-
ments or observations, these scales offer direct and intuitive disease 
interpretation but are often criticised for their low precision and high 
inter-observer variability. Deep learning-based approaches have also 
been explored, often exhibiting improved performance. However, their 
lack of interpretability and high learning curves compared to traditional 
methods pose great challenges for clinical utility. Radiomics could be a 
potential candidate to achieve a balance by combining the computa-
tional power of machine learning with the interpretability of hand- 
crafted features [19], thus bringing increasing applications in OA 
diagnosis and prognosis [20]. 

3. Current applications of radiomics in OA 

3.1. Applications of radiomics for OA research 

Before a systematic radiomics approach was applied in OA research, 
many studies performed image data mining by extracting multiple 
mathematical features. They are still recognised as radiomics studies 
and included in this review, as similar quantitative analyses were per-
formed in OA detection, classification, and prediction. In the recent 
three years, several studies achieved enhanced predictive performance 
by leveraging multidimensional radiomics features followed by standard 
radiomics analysis steps. With the increasing popularity of radiomics in 
the OA research community, various joints that are commonly affected 
by OA, such as the hand/wrist, hip, knee, ankle/foot, and 

temporomandibular joint (TMJ), have been studied (Table 1). 
Compared to traditional clinical variables, radiomics has demon-

strated its superior capabilities in detecting patellofemoral OA of the 
knee joint [22] in one study that analysed 5507 knees with 17.3 % PFOA 
prevalence. This study utilised a landmark detection tool, BoneFinder, to 
automatically identify and analyse the patellar ROI using hand-crafted 
features and convolutional neural networks (CNN). The findings un-
derscore the superior performance of texture features, which achieved a 
higher area under the receiver operating characteristic curve (AUC) than 
conventional clinical variables. This breakthrough in the classification 
of PFOA highlights the potential of radiomics and texture analysis in 
refining our diagnostic approach, possibly leading to earlier and more 
precise disease detection. 

The standard radiomics analysis has shown considerable advantages 
among various texture analysis methods. This is evidenced by several 
studies conducted on TMJ OA by a U.S. research group using diverse 
methodologies [28,44,49,50]. Their latest work [44] attained the 
highest performance through radiomics. They extracted and selected 13 
radiomics features from CT of 92 patients that showed statistically sig-
nificant differences between the OA and control groups on the TMJ. The 
radiomics features were combined with clinical biomolecular variables 
into a total set of 52 biomarkers and modelled by different machine 
learning techniques. After comparing models developed by Logistic 
Regression, Random Forest, LightGBM, and XGBoost, the best machine 
learning model, “XGBoost + LightGBM”, achieved 87.0 % of the AUC for 
diagnosing TMJ OA status. 

Combining radiomics features with other features has been demon-
strated to further improve performance. For example, one research 
group extracted principal components analysis (PCA)-based shape, 
radiomics-based texture, and appearance features from lateral knee 
radiographic images [21]. They applied indecisive trees to distinguish 
between healthy and OA people’s radiographs and predict whether 
people who are healthy at baseline would develop OA within 84 months. 
The study used the MOST dataset with a large sample size and combined 
shape and texture features to achieve 0.88 AUC in the classification. 

Table 1 
Radiomics applications of various OA joints based on different imaging 
modalities.  

Application X-ray CT Scan MRI 

Classification Knee OAa – Healthy vs 
OA [21–25] 
Knee & Hand OA – 
Healthy vs OA [26] 

TMJb OA – 
Healthy vs OA [27, 
28] 
Hand OA – Young 
vs Older [29] 

SpAc – Healthy vs 
OA [30] 
Knee OA – Healthy 
vs ACLRd [31] 
Knee OA – Healthy 
vs OA [32–36] 
Ankle OA – Dancer 
vs Normal Person 
[37] 

Detection Knee OA – Disease 
Grade [38] 
Hand OA – 
Osteophyte [39] 

Ankle OA – 
Deformity 
Characteristics 
[40] 

Knee OA – Disease 
Grade [41] 

Prediction Knee OA –Progression 
vs Non-progression 
[21,42] 
Knee & Hand OA – 
Progression vs 
Non-progression [26] 
Hip OA – Risk of 
Incident [43] 

TMJ OA – Risk of 
Incident [44] 

Knee OA – 
Treatment 
Response of 
Vitamin D [45] 
Knee OA – Pain 
Improvement [46] 
Knee OA – High 
Risk vs Low Risk 
[41] 
Knee OA – Risk of 
Incident [47,48]  

a OA involving osteoarthritis 
b TMJ involving temporomandibular joint 
c SpA involving spondyloarthritis 
d ACLR involving anterior cruciate ligament reconstruction 
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Similarly, shape features derived from Statistical Shape Model and 
radiomics features were combined from knee joint X-rays to detect OA 
automatically [38]. The best performance was achieved when 
combining shape and texture features compared to individual feature 
categories. 

Despite the promising performance of radiomics in the detection, 
prediction, and classification of OA demonstrated by existing literature 
(Table 1), limitations still exist that prevent further clinical applications 
in OA. 

OA is a complex and prolonged disease, but most current studies 
have only been able to achieve binary diagnosis results, and limited 
studies have investigated more detailed disease presentations using 
quantitative approaches. For instance, a significant association was 
found by comparing bone trabecular texture features in X-rays of finger 
joints with MRI-defined bone flab information within 21 female OA 
patients [39]. Such a relationship suggests that the textural of bone 
trabeculae may contribute to the early detection of OA in hand. 
Although this study provides a possible direction for the research in 
early disease detection, the subject amount is too small to validate the 
findings. Another notable study has effectively quantified and predicted 
the effect of vitamin D in the treatment of OA using MRI-based radiomics 
features [45]. A total of 216 patients were enrolled in the study, and 
radiomics features were extracted from baseline MRI scans to predict the 
treatment response. The researchers further categorised the efficacy of 
the OA treatment response to vitamin D into two groups based on a 20 % 
improvement in knee pain over a 48-h period. This research is one of the 
few current studies that have a relatively solid conclusion regarding 
prognosis, employing a standard radiomics process with sufficient 
subjects. 

There are other limitations to the current study on OA. The affix 
“osteo” in osteoarthritis highlights the importance of subchondral bone 
in the pathogenesis and management of OA. CT scans provide a rela-
tively clear shape, texture and structure of bones, but currently, few 
studies have analysed the CT presentation of subchondral bone for OA 
diagnosis, especially knee OA. Moreover, more comprehensive radiomic 
analysis procedures may increase the sensitivity of OA predictions 
compared to considering only one or two image characteristics, such as 
gray level co-occurrence matrix and first order features. Cross- 
institutional validation is also required to guarantee stability and 
generalizability, especially for studies with small sample sizes. However, 
many studies are missing external validations due to challenges such as 
regulations and data security concerns. The lack of transparency and 
standardisation in data processing and feature extraction also prevents 
third-party validations. 

3.2. Applications of radiomics for OA-related musculoskeletal tissue 
research 

OA is a complex condition that affects multiple components of the 
joints. The involvement of various tissues in the joint contributes to the 
complexity of the disease diagnosis and treatment. Fortunately, a 
growing number of studies have been focusing on the applications of 
radiomics-based medical image analysis on various OA-related tissues, 
including that of cartilage [51,52], ligaments [53], tendon [54,55], bone 
[56–58], muscle [59,60], fat, etc., as summarised in Table 2. 

The imaging properties of each musculoskeletal tissue vary based 
mainly on composing materials and physical characteristics; therefore, 
different imaging modalities could be adopted for capturing interested 
pathological information. The advantage of radiomics analysis is the 
ability to exhaustively extract and analyse a vast number of quantitative 
features regardless of the type of tissue, disease type or image modality 
[12], even those specialised in functional information such as 
dual-energy X-ray absorptiometry (DXA) [57], positron emission to-
mography (PET)/CT [58], etc. 

Some of the most recent findings of cartilage radiomics focused on 
sarcomas from CT images [52] and tissue degeneration from dual-mode 

MR images, providing a non-invasive alternative to traditional diag-
nostic practices with comparable performance. For tendons, ultraso-
nography radiomics were investigated for detecting tissue injury [54, 
55], which outperformed manual readings from physicians in clinical 
settings thanks to its quantitative and objective nature. Muscle radio-
mics were adopted to identify degenerative diseases [59] and autoim-
mune disorders [60] from CT and MRI, respectively, showing how 
radiomics are applicable to distinct pathological processes even among 
the same type of body tissue. Radiomic features of fat tissues extracted 
from MR [61] and CT [62] images were also demonstrated to predict 
metabolic disorders. Given that metabolic alterations are often bio-
markers for early disease diagnosis, these findings enlighten the future 
developments of imaging biomarkers for early disease diagnosis and 
prognosis through effective data mining. At the same time, these find-
ings also provide indirect evidence of the prospective use of radiomics in 
the study of osteoarthritis. 

4. Perspectives on the future of radiomics in OA 

4.1. Prospects of radiomics in OA 

The rising prevalence of OA among ageing populations highlights an 
urgent need to develop accurate and efficient diagnostic tools. This 
necessitates exploring innovative methodologies, such as radiomics, to 
enhance detection, classification, and prediction capabilities for OA. 
Several studies have demonstrated promising results by utilising only 
one or two classes of radiomics features. Other studies have shown that 
radiomics features perform well in combination with other features 
(clinical, demographics, etc.) for precise diagnosis and prognosis of OA. 
Furthermore, a deep learning-based radiomics approach can directly 
generate and identify quantitative image features from input images in 
the neural network’s hidden layers without image segmentation and 
pre-defined mathematical formulas for feature calculation [12,14]. The 

Table 2 
Radiomics applications of various OA-related tissues.  

Tissue Year Target Imaging 
Modality 

Patients 
(Number) 

Cartilage 2022 Detect the degree of meniscus 
injury [51] 

MRIa 152 

2021 Classify atypical cartilaginous 
tumours & appendicular 
chondrosarcomas [52] 

CTb 120 

Ligament 2021 Predict Anterior Cruciate 
Ligament rupture [53] 

MRI 68 

Tendons 2022 Diagnose Achilles 
Tendinopathy [54] 

Ultrasound 139 

2016 Recognise rotator cuff 
supraspinatus tendon tear [55] 

Ultrasound 40 

Bone 2022 Detect osteoporosis of the 
lumbar spine [56] 

CT 133 

2020 Classify osteoporosis, 
osteopenia, and normal 
patients [57] 

DXAc 147 

2019 Predict metastasis risk of 
osteosarcoma [58] 

PETd/CT 83 

Muscle 2021 Identify sarcopenia [59] CT 247 
2021 Classify idiopathic 

inflammatory myopathies 
[60] 

MRI 74 

Fat 2021 Predict type 2 diabetes 
mellitus & metabolic 
syndrome status [61] 

MRI 310 

2021 Evaluate metabolic disorders 
& Predict surgery-induced 
weight loss effects [62] 

CT 675  

a MRI involving magnetic resonance imaging 
b CT involving computerised tomography 
c DXA involving dual-energy X-ray absorptiometry 
d PET involving positron emission tomography 
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framework holds great promise for future radiomics research in the 
diagnosis and prognosis of OA. 

Moreover, radiomics may facilitate early diagnosis by reflecting 
subtle changes that conventional diagnostic methods may not identify. 
While limited studies have demonstrated radiomics in early diagnosis, 
further research is needed to explore its accuracy in various image 
modalities and fulfil diverse clinical requirements. For instance, while 
MRI is more accurate than X-ray in early OA detection [63], its high cost 
and time consumption often lead to the preference for using radiog-
raphy. It remains to be seen whether the combination of radiomics and 
radiography can achieve comparable accuracy of early detection to MRI. 
Meanwhile, early diagnosis of OA may lead to overdiagnosis and over-
treatment, especially for patients whose disease progresses slowly or not 
at all [63]. Therefore, it is crucial to investigate the disease progression 
prediction tasks to establish personalised disease management [64], 
such as estimating disease trajectory, evaluating the risk of complica-
tions, assessing response to treatment, and modelling survival outcomes. 

With the standardised feature definitions by IBSI, radiomics may be a 
solution to the major challenges in terms of cross-institution validation. 
Other obstacles, such as inconsistent datasets, diverse study designs, and 
varied data processing and analysing procedures, have significantly 
hindered advancements in image-based OA diagnosis and prognosis 
predictions. Recognizing the need for reliable datasets for clinical 
development, the community has initiated large-scale OA image data-
bases like the Osteoarthritis Initiative (OAI), Multicenter Osteoarthritis 
Study (MOST), and Cohort Hip and Cohort Knee (CHECK). These data-
bases, each containing thousands of samples, pave the way for the 
development of more reliable models and enable large-scale cross- 
institutional validations, bringing radiomics closer to daily clinical 
application. Nevertheless, clinical applications of radiomics are still rare 
[65], possibly due to the low efficiency and poor transparency in data 
processing and model establishment. Prospective studies can provide 
stronger evidence of cause-and-effect relationships, which reduce the 
possibility of false discovery and enhance the reliability of the findings. 
Such research is needed in the future to verify the clinical capabilities of 
radiomics. 

4.2. Recommendations for applications of radiomics in OA 

While radiomics has shown potential for OA diagnosis and prognosis, 
there are several limitations and challenges to its widespread clinical 
application. The following considerations should be taken into account 
to ensure successful radiomics applications for OA: 

4.2.1. Imaging modality 
Each imaging modality serves a unique purpose in a patient’s diag-

nosis and treatment journey. Different imaging modalities may be uti-
lised to obtain specific information at different stages of disease 
management. For instance, X-rays are used for screening, while CT 
provides detailed bone structure information before surgery. Currently, 
most radiomics research has focused on MRI, while other imaging 
methods, such as CT and radiography, may contain unique information 
and deserve further investigation. The harmonisation of imaging pro-
tocols for each of the imaging modalities is crucial to improve the 
comparability and generalizability of radiomics studies. This includes 
specifying acquisition parameters, image reconstruction techniques, and 
quality control measures. 

4.2.2. Sample size 
Medical images can be difficult to access due to large data volume 

and patient privacy concerns, resulting in smaller sample sizes for 
retrospective studies. However, a small sample size may increase the risk 
of overfitting the constructed models, resulting in biased and unreliable 
prediction outcomes. To address this issue and ensure the robustness of 
the model, it is recommended that a sample size of at least 100 data per 
group be used after appropriate quality screening in radiomics analysis 

[8]. 

4.2.3. Feature selection 
During feature extraction, a radiomics study may generate thousands 

of features. This high-dimensional feature space of sparse data increases 
the risk of false discovery and computation cost, making feature selec-
tion a critical step in radiomics analysis. As a rule of thumb, the number 
of retained features should be no more than one-tenth of the sample size 
[66]. Additionally, it is important to consider the reproducibility and 
generalizability of selected features in light of varying image quality, 
resolution, and scale from different operators, equipment, and in-
stitutions. Test-retest and phantom studies can be utilised to address 
these issues [67,68]. 

4.2.4. ROI/VOI selection 
The region selected for feature extraction (ROI/VOI) can greatly 

impact prediction sensitivity. For example, features extracted from the 
medial subchondral bone region of the knee have shown a higher as-
sociation with OA than those from the lateral subchondral bone [32]. 
Due to the varying information that radiomics features contain in 
different locations, it may be beneficial to compare several different 
ROIs/VOIs and select the best region for analysis [24,32]. 

5. Conclusion 

The increasing prevalence of OA calls for the development of more 
accurate and efficient diagnostic tools, especially for early detection, 
intervention, and treatment. Radiomics offers high accuracy and inter-
pretability in the analysis of medical images, making it a valuable tool in 
the diagnosis and prognosis of OA. While limited studies have demon-
strated the accuracy of radiomics in predicting OA progression, further 
research is needed to evaluate its early detection ability and fulfil clin-
ical requirements. Moreover, the standardised feature definitions and 
large-scale OA image databases enable reliable modelling and cross- 
institutional validations, leading the way towards daily clinical appli-
cation. Future radiomics research in both the diagnosis and prognosis of 
OA are warranted to further address medical and social needs of OA 
patients. 
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[16] Iancu RI, Zară AD, Mireștean CC, Iancu DPT. Radiomics in COVID-19: the time for 
(R)evolution has came. Bio 2022;2(1):60–8. 

[17] Spadarella G, Perillo T, Ugga L, Cuocolo R. Radiomics in cardiovascular disease 
imaging: from pixels to the heart of the problem. Curr Cardiovasc Imaging Rep 
2022;15(2):11-21. 

[18] Wei J, Jiang H, Gu D, Niu M, Fu F, Han Y, et al. Radiomics in liver diseases: current 
progress and future opportunities. Liver Int 2020;40(9):2050–63. 

[19] Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri E. A deep look into 
radiomics. La radiologia medica 2021;126(10):1296–311. 

[20] Shur JD, Doran SJ, Kumar S, Ap Dafydd D, Downey K, O’Connor JP, et al. 
Radiomics in oncology: a practical guide. Radiographics 2021;41(6):1717–32. 

[21] Minciullo L, Bromiley PA, Felson DT, Cootes TF. Indecisive trees for classification 
and prediction of knee osteoarthritis. Cham: Springer; 2017. 

[22] Bayramoglu N, Nieminen MT, Saarakkala S. Machine learning based texture 
analysis of patella from X-rays for detecting patellofemoral osteoarthritis. Int J Med 
Inf 2022;157:104627. 

[23] Navale DI, Hegadi RS, Mendgudli N. Block based texture analysis approach for 
knee osteoarthritis identification using SVM. In: Paper presented at: IEEE 
international wie conference on electrical & computer engineering; 2015. 

[24] Chan S, Dittakan K, Garcia-Constantino M. Image texture analysis for medical 
image mining: a comparative study direct to osteoarthritis classification using knee 
X-ray image. Int J Adv Sci Eng Inf Technol 2020;10(6):2189–99. 

[25] Li W, Feng J, Zhu D, Xiao Z, Liu J, Fang Y, et al. Nomogram model based on 
radiomics signatures and age to assist in the diagnosis of knee osteoarthritis. Exp 
Gerontol 2023;171:112031. 

[26] Stachowiak GW, Wolski M, Woloszynski T, Podsiadlo P. Detection and prediction 
of osteoarthritis in knee and hand joints based on the X-ray image analysis. 
Biosurface & Biotribology 2016;2(4):162–72. 

[27] Paniagua B, Ruellas A, Benavides E, Marron S, Wolford L, Cevidanes L. Validation 
of CBCT for the computation of textural biomarkers, vol. 9417. SPIE; 2015. 

[28] Bianchi J, Gonçalves JR, de Oliveira Ruellas AC, Ashman LM, Vimort JB, Yatabe M, 
et al. Quantitative bone imaging biomarkers to diagnose temporomandibular joint 
osteoarthritis. Int J Oral Maxillofac Surg 2021;50(2):227–35. 

[29] Halilaj E, Moore DC, Laidlaw DH, Got CJ, Weiss A, Ladd AL, et al. The morphology 
of the thumb carpometacarpal joint does not differ between men and women, but 
changes with aging and early osteoarthritis. J Biomech 2014;47(11):2709–14. 
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