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Adaptive Fusion of Deep Learning with
Statistical Anatomical Knowledge for Robust

Patella Segmentation from CT Images
Jiachen Zhao, Tianshu Jiang, Yi Lin, Lok-Chun Chan, Ping-Keung Chan, Chunyi Wen, and Hao Chen

Abstract— Knee osteoarthritis (KOA), as a leading joint
disease, can be decided by examining the shapes of
patella to spot potential abnormal variations. To assist
doctors in the diagnosis of KOA, a robust automatic patella
segmentation method is highly demanded in clinical
practice. Deep learning methods, especially convolutional
neural networks (CNNs) have been widely applied to
medical image segmentation in recent years. Nevertheless,
poor image quality and limited data still impose challenges
to segmentation via CNNs. On the other hand, statistical
shape models (SSMs) can generate shape priors which give
anatomically reliable segmentation to varying instances.
Thus, in this work, we propose an adaptive fusion
framework, explicitly combining deep neural networks and
anatomical knowledge from SSM for robust patella seg-
mentation. Our adaptive fusion framework will accordingly
adjust the weight of segmentation candidates in fusion
based on their segmentation performance. We also propose
a voxel-wise refinement strategy to make the segmentation
of CNNs more anatomically correct. Extensive experiments
and thorough assessment have been conducted on various
mainstream CNN backbones for patella segmentation in
low-data regimes, which demonstrate that our framework
can be flexibly attached to a CNN model, significantly
improving its performance when labeled training data are
limited and input image data are of poor quality.

Index Terms— Medical Image Segmentation, Deep
Learning, Statistical Shape Model, Patella Segmentation,
Knee Osteoarthritis
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Fig. 1: Anatomy of knees. Pictures in the middle column are
CT scans of knees, where regions of patella are highlighted in
pink. Pictures on the right are 3D shapes of patella.

I. INTRODUCTION

KNEE osteoarthritis (KOA) affects a larger population
than any other joint disease and may lead to signifi-

cant annual expenditure in a country [1]. KOA occurs when
degenerative changes develop in the cartilage that lines the
knee joint [2]. Extensive research has been conducted to help
humans better tackle OA. For instance, [3, 4] utilize neural
networks to classify the severity of KOA. However, few studies
have investigated how to assist the detection of KOA. Early
detection is necessary because KOA is progressive and can
be incurable at its later stage [5]. A crucial indicator of
KOA is the degenerative change of patella [6] that is a small
bone located in front of the knee joint (shown in Fig. 1).
Patella protects the knee and connects the muscles in the
front of the thigh to the tibia. Doctors examine the shape
of patella to spot any abnormal variations that foreshadow
the progression of KOA. However, conventional ways to
manually observe computed tomography scans of patella can
be time-consuming and demanding, which require professional
anatomical knowledge and related long-term experience. An
automatic segmentation method is thus of great help and
highly demanded in clinical practice. Therefore, this paper
focuses on proposing a robust automatic patella segmentation
framework, which can help doctors more quickly capture the
degenerative change of patella to diagnose KOA.

Recently, thanks to the rapid development of convolutional
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neural networks (CNNs), CNN-based models have become
the mainstream backbones for automatic medical image
segmentation. Those CNN-based models have made
noticeable achievements in segmentation of many organs or
tissues such as liver [7, 8, 9], lesion [10], lung [11, 12] and
tumor [9, 13, 14]. However, segmentation of patellas may
still impose significant challenges to mainstream CNN-based
models due to ambiguous boundary and the relatively small
region in the entire volume. More importantly, the amount
of annotated image data is limited, which can greatly prevent
CNN-based models from achieving satisfactory accuracy [15].
In addition, CNN-based models are vulnerable to poor image
qualities, e.g., image artifacts and low contrast, which often
appear in medical images [16].

To tackle those difficulties, researchers leverage shape priors
generated through a Statistical Shape Model (SSM) to improve
the segmentation of CNNs [16, 17, 18, 19]. The result of
SSM can still be anatomically reliable, even when image
data are limited or have poor quality. However, SSMs are
sensitive to initialization [18] and need strenuous efforts to
realize the location of shapes [20]. Additionally, most of past
works [16, 17, 18] apply shape variation in SSM by aligning
it to segmentation results of CNNs and then use that result
of SSM as output, which may raise two crucial problems: (1)
Lost fine details: Replacing the result of CNNs with a matched
statistical shape can cause undesired decline of the final seg-
mentation performance. Because SSMs may not accurately de-
scribe instance-wise shape variation but give general anatomy
information [21]. Some detailed instance-wise information
captured by CNNs may then lose its value. (2) Misleading
adjustment: When CNNs fail, for example, only producing
broken segmentation in the case of low-contrast input images,
it may be problematic to adapt statistical shapes following
results of CNN. [19] incorporates CNN into the generation of
active shapes, but this method is still very vulnerable to input
images of poor quality, and thus, is not robust.

To address challenges faced by CNN-based frameworks for
patella segmentation and fill the gaps of utilizing SSM, this
work proposes a transparent adaptive fusion framework to
integrate predictions of deep learning models with anatomical
knowledge represented by SSM for robust segmentation
in low-data regimes. We propose a voxel-wise refinement
strategy (VRS) to improve segmentation results by refining
predictions from CNN and SSM, making CNN outputs more
anatomically correct and providing a fusion candidate.

Our adaptive fusion framework is motivated by a
straightforward idea. For an input case, when the ground truth
is available and there are multiple segmentation results (e.g.,
from CNN and SSM), an optimal solution is to compare their
Dice-S∅rensen coefficients (DSCs) to choose the best segmen-
tation as output. However, how can we achieve that in practice
at test time when the ground truth is unknown? To do that, in
our adaptive fusion framework, there are two modules devel-
oped. (1) We propose a module named difference score mod-
eling (DSM) at training time. In that module, we approximate
the Dice difference (∆DSC) between segmentation results of
CNN and SSM (i.e., DSCCNN −DSCSSM). We name this ∆DSC
as difference score (represented by Ds) since it can reflect the

performance difference of segmentations. We then conduct
clustering to decide the corresponding optimal segmentation
choices indicated by our estimated Ds. (2) We propose an
adaptive nearest neighbor fusion (ANNF) module at test time.
ANNF will decide the weights of each segmentation for fusion
accordingly based on its performance via referring to clusters
of estimated Ds. This way of fusion enables our approach to
give robust segmentation. For instance, when CNN fails in the
case of low-contrast images, our adaptive fusion framework
can still output a decent result by assigning more weights to
segmentation with statistical anatomical knowledge. Our codes
are available at https://github.com/andotalao24/PatellaSeg.

Therefore, our contributions are:
• We explicitly combine SSM-based anatomical knowledge

and CNN-based segmentation via a transparent adap-
tive fusion framework, which can automatically adjust
weights in fusion for optimal segmentation results.

• We propose a voxel-wise refinement strategy (VRS) for
the dynamic integration with shape priors to make patella
segmentation of CNN more anatomically correct. The
VRS can confine the segmentation of CNN and serve
as a candidate for fusion.

• We have established a benchmark computed tomography
(CT) dataset for patella segmentation and the ground
truth was provided by radiologists with agreement. To
the best of our knowledge, we are the first to conduct
segmentation of patella on CT scans in low-data regimes
with deep learning models. Our proposal’s effectiveness
is demonstrated through extensive experiments and thor-
ough assessment on diverse CNN backbones.

II. RELATED WORK

A. Medical Image Segmentation with SSM
Before the appearance of capable convolutional neural net-

works, SSMs are often employed [22] for the medical image
segmentation of bones and organs which have regular anatom-
ical features. In terms of patella segmentation, [20] adopts a
dual-optimization approach based on the active shape model
(ASM) for lateral knee X-ray images. Because SSMs are ob-
tained via geometric priors on the shapes of training data with-
out referring to pixel information, artifacts or low image con-
trast may not exert influence. However, heuristically designed
models of appearance are usually necessary for such methods
to locate regions and adjust the SSM to the image data [23].
[24] located structures by modeling gray-level appearance and
active shapes. In summary, SSMs can offer useful anatomical
knowledge with a few labeled data, which enables robust seg-
mentation in the case of limited data and unreliable image data.
B. Medical Image Segmentation with CNN

In recent years, CNNs have been the mainstream framework
for various medical image segmentation tasks. CNN-based
models can be broadly classified into two categories, i.e.,
2D-based and 3D-based approaches. In terms of 2D-based
methods, 2D convolution is conducted toward slices of input
medical image data (e.g., volumetric CT or magnetic reso-
nance imaging (MRI)) [13, 25, 26, 27]. UNet [27] especially,
has been widely applied because of its reliable performance
and simplicity. Based on UNet, there are many variants.
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Fig. 2: An illustration of our adaptive fusion framework, which consists of three parts. Segmentations as candidates for
fusion are first generated from a CNN backbone, SSM and voxel-wise refinement strategy (VRS), which are represented by
C, S and V respectively. Those segmentations are then sent to Difference Score Modelling (DSM) module and Adaptive
Nearest Neighbor Fusion (ANNF) module. Ds represents the difference score (i.e., DSCCNN − DSCSSM) and Ds∗ stands for
the estimated Ds. In ANNF, Φ(Ds∗, CS),Φ(Ds∗, CV) and Φ(Ds∗, CC) represent memberships (i.e., possibilities) of Ds∗ to be
in the clusters CS, CV, and CC formed in DSM.

UNet++ [28] reinforces the skip connections to aggregate
features of varying semantic scales. nnUNet [29] shows that
UNet [27] is capable enough for various tasks in medical
image analysis by doing automatic searches on optimal hyper-
parameters. In addition, ResUNet [30] is also a popular and
capable model for segmentation, which replaces the encoder
with a ResNet [31]. In terms of 3D-based methods, 3D convo-
lution is conducted toward a volume, which can better utilize
information across slices [7, 32, 33, 34, 35, 36]. VNet [32], for
instance, incorporates residual connection into 3D UNet and is
trained towards a Dice coefficient. There is also work combin-
ing both 2D and 3D methods. For example, H-DenseUNet [9]
leverages both a 2D DenseUNet and a 3D counterpart for
extracting intra-slice features and aggregating volumetric con-
texts. In terms of knee bone segmentation, [37] employed
three 2D CNNs with axial, coronal and sagittal image planes
as input respectively for tibial cartilage segmentation. [38]
combined SegNet [26] with 3D simplex deformable modeling
for the cartilage and bone segmentation of the knee joints.

C. Segmentation Combining SSM and CNN
Rather than through fusion, past works combine SSM and

CNN mainly through initializing SSM with segmentation of
CNN and adjusting SSM based on some schema. In other
words, the final output will be given solely by SSM rather than
both CNN and SSM. [16, 17] designed a complex system that
consists of 2D UNet, 3D UNet and SSM. The SSM which is
adapted to the segmentation of 2D UNet will serve as the input
to a 3D UNet. The result of the 3D UNet may further be used
as a template for the SSM to fit. This fashion of combination
may neglect some instance-wise details segmented by UNet.
In addition, when UNet fails to produce correct segmentation,
adapting SSM to that segmentation will not be reasonable, pos-

sibly damaging the ultimate segmentation result. [18] proposed
a way to utilize statistical pixel-level information by Bayesian
Model to assist the adjustment of the SSM. [19] employed a
CNN to adjust the shape of SSM based on input images. Those
adjustment schemata utilizing either pixel-level features or
CNNs may be vulnerable to poor image quality such as artifact
and low-contrast. So those methods may not give robust
segmentation in practice when image data are unreliable.

III. METHOD

In this section, we develop an adaptive fusion framework
whose workflow is shown in Fig. 2. There are three stages
in our framework. In the first stage, we will respectively get
segmentations from a CNN backbone and SSM and obtain
the result of voxel-wise refinement strategy (VRS). Those
segmentation results serve as candidates for fusion. In Sec. III-
A, we first introduce the background of SSM and how we
generate it in a label-free way. Then in Sec. III-B, we explain
the working mechanism of our proposed VRS. In the second
stage, the difference score modeling (DSM) will estimate the
difference score (Ds) and conduct clustering on the approxi-
mated Ds (represented as Ds∗). Then we can predict the best
segmentation based on Ds∗ without ground truth. The DSM is
explained in Sec. III-C. At the third stage, for each input test
case, our proposed adaptive nearest neighbor fusion (ANNF)
module will decide the possibility of each segmentation result
to be the best via a weighted k-nearest neighbor algorithm
based on clusters of Ds∗. Those possibilities are deemed as
weights in fusion to produce the ultimate segmentation result.
The ANNF is explained in Sec. III-D.
A. Revisiting SSM

SSM gives the average and general shapes and has a
number of parameters for controlling the variation of shapes
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[39]. For the construction of an SSM, there are generally two
stages, which are shape alignment and dimension reduction.
The generalized Procrustes alignment (GPA) is a popular
method for shape alignment, as described by [40]. The
procedure to minimize the distance between two shapes is
implemented iteratively to align a group of shapes to their
unknown mean. After alignment, we can simply average over
all samples to obtain the mean shape as x̄ = 1

N

∑N
i=1 xi,

where x̄ is the mean shape, xi indicates the ith shape and N
is the total number of all shapes. Instead of using variance
on all points of a shape, we can reduce the dimension to
a small set of modes for the description of variation since
there may be inter-point correlation. This process is usually
accomplished by using principal component analysis (PCA)
[41]. Finally, the segmented shape in the training set can be
represented by using the mean shape and a weighted sum of
deviations: x = x̄ + Pθ, where P = (p1p2...pt) is the matrix
of the first t eigenvectors, and θ = (θ1θ2...θt)

T is a vector of
weights. Weights can be learned through regression models
to adapt the SSM to certain image data. Further details for
calculation and construction can be found in [23].

The conventional procedures of generating an SSM include
arduous landmarks labeling. Landmarks are characteristic
points that are distinguishable and represent features of shapes.
In our work, to avoid laborious and challenging annotation of
landmarks, we use all points sampled from segmented training
data by an edge detector [42]. Additionally, although SSM
can represent average shapes and variation as well [43], we
found that when combining SSM with neural models, applying
further variations [16] in SSM leads to degraded performance
compared with using average shapes alone (see our experi-
ments in Sec. IV-D). That may be attributed to lost fine details
and misleading adjustments when applying variations by some
schema. Thus, in this work, segmentation of SSM refers to
results by employing average shapes if without specification.

B. Voxel-wise Refinement Strategy
VRS works under the observation that CNN is good at cap-

turing instance-wise shape variation, while it lacks anatomical
knowledge [15]. So, we utilize a weighted average to integrate
shape priors into the segmentation results of CNN when CNN
and SSM are giving comparable segmentation results. Let C,
S and V stand for the segmentation results of CNN, SSM
and VRS respectively. The VRS is represented as follows:

V = µ⊗ C + (1− µ)⊗ S, (1)

where µ is a weight matrix and ⊗ stands for element-wise
multiplication. µ is decided by the following equation:

µ =

{
1−∆⊗ 1

rσ ∆ < rσ
0.5 ∆ ⩾ rσ

, (2)

where σ is the standard deviation of shapes to the mean that
can be derived along with the generation of SSM at training
time; ∆ is the absolute difference value between C and S; r is
a scalar parameter (see Sec. IV-C for its value decision during
implementation). Weight µ is adjustable following a schema
that when the deviation to the mean shape at a position is large,
more weights will be given to the C because shapes are more

variable at that position; when ∆ is too large, more weights
will be assigned to S to constrain the shape. To complete the
definition of Eq. (2), we need to reconsider µ in the boundary
case where C and S are not comparable (∆ ⩾ r × σ). We
conduct a simple arithmetic mean between S and C. This naive
setting is empirically found effective and reduces the number
of hyper-parameters in our framework. Overall, the VRS can
confine the segmentation of CNN and remove outliers.
C. Difference Score Modeling

In this section, we propose to estimate the difference score
Ds (i.e., DSCCNN − DSCSSM) and implement clustering on the
approximated results Ds∗. However, instead of precise quan-
titative approximation, the goal of DSM is to give qualitative
prediction by forming general range-wise mappings from Ds∗

to true Ds. More specifically, for instance, when Ds∗ is small,
it is expected to indicate a fairly small Ds (e.g., a negative
value). Thus we can know SSM outperforms CNN and in
this case, SSM should be the optimal segmentation choice.

We start our derivation of Ds∗ with the original formula
of the Ds:

Ds =
2 |C ∩M |
|C|+ |M |

− 2 |S ∩M |
|S|+ |M |

, (3)

where M represents the ground truth; S and C are segmenta-
tion results of SSM and CNN; |·| denotes a volume; |C ∩M |
and |S ∩M | stand for the intersection of S and C with M .
In order to focus on the difference between segmentation
results, we then split S and C respectively into two parts:

C = I ∪ Ce, S = I ∪ Se, (4)

where I is the common area of S and C (i.e., |C ∩ S|); Se

and Ce are portions of S and C that exclude the intersection
I (i.e., Se = S \ I, Ce = C \ I). Se and Ce actually showcase
the disagreement of SSM and CNN on the segmentation of
the same instance.

We next accordingly define γ, α and β as the percentage
of I , Ce and Se to be correctly segmented (i.e., lying inside
M ). γ = |I∩M |

|I| , α = |Ce∩M |
|Ce| , β = |Se∩M |

|Se| . We can then
have the following representations:

|C ∩M | = γ |I|+ α |Ce| , (5)
|S ∩M | = γ |I|+ β |Se| . (6)

Then replace |C ∩M | and |S ∩M | in Eq. 3 with Eq. 5 and
Eq. 6. We can obtain:

Ds∗ = 2

(
γ |I|+ α |Ce|
|C|+ |M |

− γ |I|+ β |Se|
|S|+ |M |

)
. (7)

Because I is agreed on by both C and S, we estimate γ as
1, indicating that I has high confidence to be fully correct.
We then estimate the |M | as the average of |S| and |C|
because S and C are expected to be generally close to M
in terms of the size alone. Experiments in Sec. IV-F support
the effectiveness of our approximation. Therefore, we come
to the following approximation.

γ ≈ 1 , (8)

|M | ≈ |S|+ |C|
2

. (9)
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After plugging Eq. 8 and Eq. 9 into Eq. 7, we can finally
obtain our Ds∗:

Ds∗ = 2

(
|I|+ α |Ce|
|C|+ |S|+|C|

2

− |I|+ β |Se|
|S|+ |S|+|C|

2

)
. (10)

As a result, only α and β are left undecided in Eq. 10.
We conjecture that there exist monotonic relations between
α and Ce, β and Se. The analysis is as follows: Let m be
the ground truth for Ce and Se, i.e., the area that C and S
disagree. We speculate the disagreement is mainly because
m is a changeable area specific to instances (e.g., contour)
that tends to be captured by CNN rather than SSM [15].
Therefore, when Ce and Se are increasing, meaning that the
m is more diverse from the shape priors given by SSM, then
α may increase and β may decrease.

We thus implement linear regression to learn speculated
monotonic relations between α and |Ce|, β and |Se|. The
expression for our regression is as follows.

α =
wα

λ
|Ce|+ bα, (11)

β =
wβ

λ
|Se|+ bβ . (12)

Here, wα and wβ are scalars rather than matrices. λ is a
constant. We divide the wα and wβ by λ so as to accelerate and
stabilize the learning process, because |Se| or |Ce| is usually
much larger than α or β. We may need to clip the predicted
ratios into the range between 0 and 1. We visualize the relation
between α and |Ce|, β and |Se| and our regression result as
well in Fig. 3a and Fig. 3b. The ratio α tends to be larger
with |Ce| becoming bigger; the relation between |Se| and β is
the opposite. Such monotonic correlations align with our con-
jecture above. Linear regression can efficiently describe such
major relations. In Sec. IV-F, we further empirically show lin-
ear regression is simple but effective enough for our approach.

Then, we conduct Ds∗ clustering at training time to decide
what the optimal segmentation is indicated by a certain range
of Ds∗. Clustering is implemented on a separate set where
data are unseen by segmentation models so that their true
performance can be reflected by DSC. For each input instance,
we compare the DSCs of SSM, CNN and VRS to decide which
outperforms. Then, the unclassified Ds∗ will be assigned
to the corresponding cluster for that best segmentation. The
step-by-step implementation is shown in Algorithm 1.

Algorithm 1 Ds∗ Clustering

Require: The segmentation C of CNN; The segmentation S
of SSM; The segmentation V of VRS; The cluster CC for
CNN; The cluster CS for SSM; The cluster CV for VRS;
The ground truth M .

Ensure: The Ds∗ is assigned to one of CC,CS and CV.
1: Calculate the Ds∗ based on Eq. 10.
2: Let f be the function to calculate DSC.
3: Define X as the segmentation with the highest DSC.
4: Calculate Max(f(C, M), f(S, M), f(V, M)),

to decide X .
5: Add the Ds∗ to CX , CX ∈ {CC, CS, CV}.

0 50 100 150 200
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0.0

0.2

0.4

0.6
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1.0

(a) The correlation between α and |Ce| is
generally positive.
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(b) The correlation between β and |Se| is
generally negative.

Fig. 3: The blue dots show the correlation between α and |Ce|,
β and |Se|. The red line is the result of our regression. The
majority of dots cluster around the regression line.

D. Adaptive Nearest Neighbour Fusion

Based on clusters formed in DSM, we can predict the
optimal segmentation choice indicated by Ds∗ computed at
test time. We adopt a weighted k-nearest neighbor algorithm
rather than a deterministic one, which outputs the possibility
of each segmentation result to be the best. Such a weighted
algorithm will consider every segmentation choice, thus
reducing the influence of errors introduced by our estimation
of Ds. The predicted possibilities are deemed as weights for
fusion. The adaptiveness of our ANNF is that during fusion,
among all segmentation results, the better one segmentation
is, the larger weight it will have.

For the implementation of our algorithm, we are inspired
by the concept of membership from “fuzzy set” [44]. In fuzzy
set theory, each element in a set has a grade of membership
indicating its possibility of belonging to that set. In our
case, membership can be considered as the possibility of
each segmentation result to be the best. We follow steps in
[45] to decide the memberships of unclassified Ds∗ at test
time. First, we need to find the set S = {Ds∗i | i = 1, 2, ..., k}
that contains the k nearest Ds∗ in the clusters to the current
unclassified Ds∗. Then, let Φ(Ds∗, CX ) be the membership
of Ds∗ to be in the cluster CX ; Let Φ(Ds∗i , CX ) be the mem-
bership of elements of S in the CX , where X = C, S, V . The
elements of S are assigned memberships in a way that each
Ds∗i has complete membership (i.e., equals to 1) for the
cluster which it belongs to and zero membership for the other
clusters. Following [45], we define Φ(Ds∗, CX ) as follows:

Φ(Ds∗, CX ) =

∑k
i=1 Φ(Ds∗i , CX )/d+ ϵ∑k

i=1 1/d+ ϵ
, d = |Ds∗−Ds∗i |2,

(13)
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where ϵ is a very small constant for smoothing and d is
the distance. The assigned membership of Ds∗ is affected
by the inverse distance to the nearest neighbors and their
memberships. Therefore, the membership for CX will be
larger if Ds∗ is closer to some Ds∗i in CX . Finally, the result
after fusion will then be:

Output =
X∑

Φ(Ds∗, CX )⊗X , X = C, S, V. (14)

Memberships Φ(Ds∗, CC),Φ(Ds∗, CS) and Φ(Ds∗, CV) are
namely the weights for segmentations C, S and V in the
fusion. Therefore, we can give an output that combines
all segmentation results, where the optimal segmentation
contributes the most.

IV. EXPERIMENTS
A. Dataset

We collected CT series of knee bones from 85 patients
from January 2019 to October 2020 at Queen Mary Hospital
in Hong Kong. Ethical approval for this data collection was
obtained from the Hospital Authority of Hong Kong (approval
number UW 22-090). To ensure the utmost privacy protec-
tion, all patients’ personal information has been meticulously
removed from the dataset. CT images were reconstructed
with slice thicknesses of 0.625 mm and spacing of 0.625
mm. The patella area of each CT slice was annotated by
two professional radiologists (through consensus) who have
five-year-long clinical experience. The manual segmentation is
conducted by using ITK-SNAP 1. In this work, we randomly
split the dataset into 50 CT scans for training, 15 CT scans
for validation and 20 CT scans for test. Note that no patient
will be in the different sets for a fair comparison.

B. Evaluation Metrics

Five metrics are used to measure the accuracy of
segmentation results. For volumetric measures, we calculate
volumetric overlap error (VOE), relative volume difference
(RVD) and DSC. For surface distance measures, average
symmetric surface distance (ASD) and maximum surface
distance (MSD) are employed. Surface distance measures
can better represent small features, such as osteophytes that
are crucial to diagnostic purposes. For VOE, RVD, ASD and
MSD, the smaller the value is, the better the segmentation
result is. The value of DSC refers to Dice per case score.
The detailed formulas for those metrics can be found in [46].

C. Implementation Details

We implement our models using Keras with TensorFlow
2.1.0 as backend. For CNN backbones, we use the ADAM
optimizer [47] with a learning rate 10−4. The batch size is
32 and the training epoch is 60 based on validation results.
All experiments were conducted using an Intel CPU, and
a NVIDIA RTX2080s GPU. DSM is implemented on the
validation set (869 CT slices) since DSM requires segmen-
tation on unseen data. For the weighted k-nearest neighbor
algorithm in ANNF, we set k as three, which we found gives a
balance between computation time and performance of fusion.

1http://www.itksnap.org; v. 3.8.0; open-source software

For parameters in Eq. 2 of VRS, we set r as the maximum
among the averages of maximums of ∆/σ of training data
at each position. As a result, r × σ can cover the majority
of the displacement of CNN from SSM at each position and
outliers can thus be detected and filtered. For parameters in
linear regression (i.e., Eq. 11 and Eq. 12) of DSM, λ is set
as the average of two standard deviations from the mean size
of |Se| and two standard deviations from the mean size of
|Ce|. As a result, |Ce| /λ and |Se| /λ can be scaled within 0
and 1, becoming comparable to α and β. The ϵ in Eq. 13 of
ANNF is set as 0.001.

D. Results and Analysis

Since we are the first to conduct patella segmentation with
CT images, we first test four widely adopted CNN backbones
in medical image analysis, namely UNet [27], ResUNet [30],
DenseUNet [9] and VNet [32] to set up baselines. The UNet
follows the structure in [16] that is constructed for knee
bone segmentation and gives a leading performance on the
public dataset of the MICCAI grand challenge for knee
image segmentation. For ResUNet, we use ResNet-34 as
the encoder. The specific structure is illustrated in [30]. For
DenseUNet, we adopt the structure in [9], which demonstrates
a competitive performance on three organ segmentation tasks
in Liver Tumor Segmentation (LiTS) Challenge. We adopt
VNet from [32] that was proven capable on a public challenge
dataset for prostate segmentation [48]. Except VNet, all the
models are 2D-based. The final results are shown in Table I.
Four CNN baselines show similar segmentation performances
on patella CT scans according to the diverse metrics. The
DSCs are approximately 84%.

Then we apply our adaptive fusion framework to all four
CNN backbones to evaluate its effectiveness in improving
their segmentation results. We implement our approach with
and without the VRS as a candidate for fusion to examine
the effect of VRS. The results of Table I demonstrate that our
fusion framework can bring noticeable improvement on all
those CNN baselines. DSCs of all four CNN backbones can
be increased by around 0.6% when VRS is not employed.
When VRS is applied, the performance is further boosted. In
terms of DSC, the average increase of all CNN backbones can
then achieve around 1.2%. Additionally, we observed a more
dramatic increment in the performance of CNN baselines
when the data size is further decreased (see Sec. IV-E).

As a comparison, we experiment with the method of [16]
which also proposes to integrate CNN with SSM. That method
outputs an SSM which is adjusted to fit the segmentation
results of CNN. According to results in Table I, adjusting
SSM turns out to decrease segmentation performance in our
case. This may be attributed to the fact that SSM is not good
at describing instance-wise variation but rather general shape
information. Outputting an adjusted SSM as segmentation
result may neglect some details captured by CNN. Besides,
adapting SSM to the segmentation of CNN is based on the
assumption that CNN gives a reliable output which may not
be true, especially in the case of noisy or unclear input images.
However, because our adaptive fusion framework can automat-
ically adjust the contribution of CNN and SSM to fusion based
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Method DSC (%) VOE (%) RVD (%) ASD (mm) MSD (mm)
UNet 84.16 ± 0.30 27.34 ± 10.76 2.71 ± 7.09 2.57 ± 5.05 4.92 ± 6.41
+ Adjusting SSM [16] 80.37 ± 0.33 32.81 ± 10.96 4.93 ± 7.13 4.22 ± 4.21 7.32 ± 7.28
+ NN-Fusion 84.32 ± 0.26 26.78 ± 11.05 2.69 ± 7.34 2.23 ± 4.49 4.34 ± 6.88
+ Our Approach w/o VRS 84.73 ± 0.38 26.49 ± 9.84 2.20 ± 7.41 1.94 ± 4.82 4.16 ± 7.55
+ Our Approach w VRS 85.38 ± 0.43 25.79 ± 9.32 1.93 ± 7.23 1.78 ± 4.29 3.89 ± 7.21
ResUNet 84.32 ± 0.13 27.11 ± 10.64 2.61 ± 7.02 2.50 ± 5.97 4.46 ± 6.92
+ Adjusting SSM [16] 80.74 ± 0.28 32.29 ± 10.46 4.44 ± 8.58 4.05 ± 5.37 7.24 ± 6.10
+ NN-Fusion 84.55 ± 0.31 26.25 ± 11.35 2.47 ± 7.55 2.33 ± 5.10 4.34 ± 7.21
+ Our Approach w/o VRS 85.07 ± 0.41 25.98 ± 10.61 2.10 ± 7.36 1.74 ± 6.16 3.96 ± 6.14
+ Our Approach w VRS 85.53 ± 0.34 25.18 ± 11.89 1.64 ± 8.13 1.70 ± 4.04 3.58 ± 7.38
DenseUNet 84.38 ± 0.28 26.89 ± 11.05 2.57 ± 7.53 2.12 ± 4.27 4.32 ± 6.13
+ Adjusting SSM [16] 80.70 ± 0.26 32.59 ± 11.43 4.57 ± 8.95 4.13 ± 4.37 7.29 ± 7.12
+ NN-Fusion 84.54 ± 0.33 26.70 ± 12.15 2.44 ± 7.83 2.01 ± 4.99 4.28 ± 7.37
+ Our Approach w/o VRS 84.98 ± 0.23 26.13 ± 11.27 2.16 ± 7.26 1.86 ± 3.84 4.10 ± 6.95
+ Our Approach w VRS 85.50 ± 0.28 25.47 ± 10.60 1.84 ± 7.91 1.75 ± 3.32 3.69 ± 6.73
VNet 83.79 ± 0.26 27.02 ± 10.11 2.73 ± 9.68 2.69 ± 5.61 5.12 ± 6.05
+ Adjusting SSM [16] 79.81 ± 0.31 34.35 ± 11.73 5.11 ± 9.28 4.32 ± 5.44 8.23 ± 6.45
+ NN-Fusion 84.01 ± 0.21 26.89 ± 10.64 2.56 ± 7.74 2.47 ± 5.26 4.79 ± 6.69
+ Our Approach w/o VRS 84.70 ± 0.33 26.72 ± 10.53 2.22 ± 7.95 2.09 ± 4.35 4.21 ± 6.10
+ Our Approach w VRS 85.34 ± 0.37 26.13 ± 10.67 2.10 ± 7.51 1.98 ± 4.54 3.91 ± 6.76

TABLE I: Evaluation results of different post-processing methods on four mainstream CNN baselines for segmentation.

(a) Ground truth (b) SSM

(c) CNN (d) Ours

Fig. 4: Segmentation results comparison in 3D view. Green
parts stand for the ground truth. Red parts represent the seg-
mentation given by different approaches, whose intersection
with the ground truth is shown as yellow portions. Greater
yellow portions indicate better segmentation quality.

on their respective segmentation performance, our approach is
less vulnerable to that concern on the quality of input images.

In addition, to compare our framework with an implicit fu-
sion approach, we construct a neural network for fusion (NN-
Fusion). In terms of the structure of NN-Fusion, we input the
concatenation of segmentation results of CNN and SSM into
a series of convolutional layers. The output layer consists of a
7× 7× 1 convolutional filter followed by a Sigmoid function.
Each hidden layer is made up of a 7×7×4 convolutional filter
followed by ReLU. NN-Fusion is trained with the same data
where DSM is implemented. We experimented with different
numbers of layers in NN-Fusion. We select the NN-Fusion
with two layers as a comparison since it turns out to give
the best performance. Results in Table I demonstrate that NN-
Fusion can give slight improvement on four CNN backbones.
For instance, the average DSC increase on UNet is 0.16%
which is much lower than the 1.23% increment given by our
approach. We suspect that the inferior performance of NN-

Fusion is caused by the imbalanced distribution of cases where
the fusion between CNN and SSM is needed. The majority
of cases may be that CNN significantly outperforms SSM,
leading to the unnecessity of fusion. Therefore, NN-Fusion
may be trained to become biased toward the segmentation of
CNN, neglecting fusion with SSM. However, our framework
which conducts fusion explicitly in a statistical way may be
less vulnerable to that concern.

We display a group of 3D models to visualize segmentation
results in Fig. 4. The visualization indicates that our approach
can further complete and refine the segmentation of CNN
models by integrating with the results of SSM. Our approach
can then produce a more trustworthy segmentation. For further
illustration, we also display 2D input images and segmentation
results in Fig. 5: (1) The first three rows show situations
where the CNN suffers from severe low contrast of the input
image and gives broken segmentation. However, in those cases,
the SSM still gives relatively plausible segmentation with
some areas outside the true boundary. Our fusion framework
then removes wrong portions of segmentation of the SSM
and fills holes inside the segmentation of CNN, producing
a more complete and reliable result. (2) On the other hand,
the last row shows a case where the SSM fails. Because
some KOA patients may develop osteophytes on the patella,
there can be two separate regions of interest in one slice.
Such occasional unexpected shape variation is difficult for
SSM to predict, which has been trained mainly on connected
shapes. But CNN succeeds in identifying both regions of
interest. In this case, our fusion framework chooses to output
a segmentation that is almost the same as that of CNN. In
summary, our adaptive fusion framework can automatically
adjust the weights of the results of CNN and SSM for fusion
based on their segmentation performances.

E. Effect of Training Data Size

In this section, we further decrease the total training data
by half for CNN models and SSM generation to investigate
the effect of our fusion framework in the case of more limited
data. UNet and ResUNet are chosen as CNN backbones. As
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(a) Input image (b) SSM (c) CNN (d) Ours

Fig. 5: We display a series of segmentation results of CNN, SSM and our approach for comparison. Green contours represent
ground-truth, and pink areas represent segmentation results. Results of CNN are given by UNet.
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Methods 25 training cases 50 training cases
DSC (%) Increment (%) DSC (%) Increment (%)

UNet 81.53 ± 0.24 - 84.16 ± 0.30 -
+Adjusting SSM [16] 78.86 ± 0.27 -2.67 ± 0.38 80.37 ± 0.33 -3.79 ± 0.47
+NN-Fusion 82.04 ± 0.17 0.51 ± 0.20 84.32 ± 0.33 0.16 ± 0.31
+Our Approach w/o VRS 82.52 ± 0.20 0.99 ± 0.10 84.73 ± 0.38 0.57 ± 0.26
+Our Approach w VRS 83.33 ± 0.38 1.76 ± 0.28 85.38 ± 0.43 1.23 ± 0.22
ResUNet 81.40 ± 0.14 - 84.32 ± 0.13 -
+Adjusting SSM [16] 78.88 ± 0.37 -2.52 ± 0.44 80.74 ± 0.28 -3.57 ± 0.28
+NN-Fusion 81.88 ± 0.13 0.48 ± 0.19 84.55 ± 0.31 0.23 ± 0.29
+Our Approach w/o VRS 82.48 ± 0.24 1.08 ± 0.14 85.07 ± 0.41 0.74 ± 0.35
+Our Approach w VRS 83.05 ± 0.42 1.64 ± 0.35 85.53 ± 0.34 1.21 ± 0.32

TABLE II: Evaluation of our approach on CNN frameworks with different data sizes.
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(a) Comparison between Ds and estimated Ds
with γ as 1 in Eq. 7.
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(b) Comparison between Ds and estimated Ds

with |M | as |S|+|C|
2 in Eq. 7.

(c) Comparison between Ds and Ds∗ after all
steps of approximation.

Fig. 6: We conduct experiments to examine the effects of our proposed method for approximating Ds (i.e.
DSCCNN − DSCSSM ). The Pearson correlation coefficient (PCC) is calculated to reflect the linear relatedness of our
estimation. In Fig. 6a and Fig. 6b, since only partial approximation is conducted, the label of y axis is named as “estimated
Ds” to distinguish from Ds∗.

shown in Table II, when CNN models are trained with 25
cases, we obtain more dramatic performance improvement.
The DSCs of UNet and ResUNet are respectively increased
by 1.76% and 1.64% on average when VRS is applied. In
addition, it is worthwhile to notice that the performance of
CNN backbones trained with 25 cases can be raised to a level
comparable to that of CNN backbones trained with double the
data. This implies that our approach can be especially useful
in increasing the performance of CNNs in low-data regimes.

F. Effect of Approximation in DSM
To verify the influence of our estimation in Eq. 8 and Eq. 9,

we replace one value with our estimation at a time in Eq. 7 as
comparison with the true Ds. We also calculate the Pearson
correlation coefficient (PCC) to measure the linear correlation
of our estimation with the ground truth. The results are shown
in Fig. 6a and Fig. 6b. It is noticeable that after replacing
γ with 1 in Eq. 7, the relation between our estimation and
ground truth is quite linear and the PCC can reach 0.96,
meaning that there is little influence of such estimation. When
replacing |M | with |S|+|C|

2 , the estimation starts to diverge
when Ds becomes large with the increased difference between
segmentation results of CNN and SSM. However, the overall
relation between estimation and ground truth is still close to
linearity and the PCC can achieve 0.92. Alternative values in
approximation are also tried out. Replacing γ with smaller 0.8
reaches 0.92 PCC, which is slightly lower than estimating γ
as 1. Replacing |M | with 0.6 |S|+0.4 |C| and 0.4 |S|+0.6 |C|
give 0.79 PCC and 0.86 PCC which are all lower than
employing equal weights for averaging as an approximation.

After conducting regression to get values of α and β in

Eq. 10, we evaluate our Ds∗ by comparing it with Ds. As is
shown in Fig. 6c, our Ds∗ and Ds are highly correlated with
the PCC as 0.75. More specifically, our Ds∗ is getting larger
with Ds increasing. Furthermore, after conducting clustering
based on the performance of segmentation, the average Ds∗ is
-0.25 for cases where SSM is more preferred, while the aver-
age Ds∗ is 0.13 when CNN gives better results. A range of our
Ds∗ can thus be mapped to a certain range of Ds following
a monotonic relation, which suffices to predict the magnitude
of actual performance difference between CNN and SSM.

V. DISCUSSION
Automatic patella segmentation plays an important role

in clinical diagnosis. It provides the precise contour of the
patella, which can assist the detection of early symptoms of
osteoarthritis for doctors. In this paper, we present an adaptive
fusion framework combining convolutional neural networks
and statistical shape models for robust segmentation. The
adaptive fusion framework can make instance-wise decisions
on the contribution of CNN and SSM to the output of fusion.
This is crucial in clinical practice where CT scans may have
fairly low contrast. In such cases where a CNN-based model
may fail, our proposed algorithm will assign more weights
to SSM in fusion, outputting a decent segmentation result.
Moreover, when CNN and SSM give comparable results, we
design a voxel-wise refinement strategy (VRS) to integrate
the segmentation of CNN with shape priors to make it more
anatomically correct.

To show the capability of our approach, we test it on a range
of mainstream CNN backbones, where our fusion framework
demonstrates great improvement on the results of all those
CNN models. We further test our approach with half of the
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training data for CNN backbones. Experiments show that our
adaptive fusion framework works better when data are more
limited. Through the post-processing of our fusion framework,
the performance of CNN baselines can be raised to a level
comparable to that of CNN models trained with double the
data. This can be very useful in practice, where annotated med-
ical image data are usually insufficient and difficult to acquire.

We also investigate a vanilla neural network for fusion in our
case, which demonstrates minimum performance improvement
on CNN backbones. A plausible explanation is that for the
majority of cases, CNN outperforms SSM, leading to the
nonnecessity of the integration with SSM. Thus, in training
data, there are relatively fewer cases where the fusion between
CNN and SSM is needed, which may cause a neural network
biased toward the sole segmentation of CNN. However, our
framework which statistically conducts explicit fusion may
avoid that issue. On the other hand, our approach is more
transparent and interpretable compared with a neural network
which is criticized to be a black box [49]. For clinical
application, transparency is important because doctors may
need to understand how and why the model produces its output
for credible diagnosis [50]. In the future, we will further in-
vestigate constructing an end-to-end interpretable deep neural
network to combine CNN with SSM in our future work.

At test time, our framework adopts an adaptive nearest
neighbor fusion (ANNF) based on clusters formed in the
difference score modeling (DSM) module during training. In
our framework, Ds∗ is manually crafted and separate to the
segmentation performance of fusion. In the future, we will
investigate incorporating those two processes to make the
derivation of Ds∗ learnable based on the feedback from the ul-
timate segmentation performance of fusion. We will also look
into including credible shape variation in SSM for better seg-
mentation in our approach. Past methods of adjusting SSM can
be very vulnerable to noisy or corrupted image data since they
rely on pixel information or segmentation results of CNN mod-
els. Thus, we exclusively employ the mean shapes of SSM in
this work, as they comprise the most general anatomical infor-
mation [21]. We aim to investigate advanced methods for ex-
ploiting SSM in the future. As another future work, the perfor-
mance of our approach can be compared with the performance
of a capsule network since capsule networks can preserve
spatial relationships of learned features and have been used re-
cently in various works [51, 52, 53]. It is known that deep net-
works are data-hungry and several augmentation methods [54,
55, 56] have been applied to improve the performance and
increase the reliability and robustness of the neural networks.
The performance of the proposed technique can be evaluated
with the increased number of data as an extension of this work.

Compared with end-to-end deep learning methods, our pro-
posed fusion framework incorporates results from both statis-
tical shape priors and CNNs. By analyzing the weights during
fusion and the proposed difference score, the ultimate seg-
mentation results of our framework can be explained to some
extent, e.g., statistical shape models produce more reliable
results than CNNs in some input cases, thus contributing more
to the fusion process. In comparison, end-to-end deep learning
with a single neural network may lack such interpretability.

However, our framework requires extra computing efforts
compared to end-to-end deep learning. We highlight that such
a tradeoff at the cost of computing efficiency is beneficial to
high-stake clinical tasks that demand the interpretability and
trustworthiness of prediction models.

VI. CONCLUSION

In this paper, we propose an adaptive fusion framework to
integrate the segmentation of CNN with shape priors provided
by SSM. The experiment results demonstrate that our adaptive
fusion framework can help CNN models yield more accurate
and more robust patella segmentation. We propose a difference
score modeling module (DSM) that approximates the ∆DSC
between CNN and SSM to benchmark their performance dif-
ference without knowing the ground truth. Then at test time, an
adaptive nearest neighbor fusion module (ANNF) is proposed
to utilize the results of DSM. ANNF can automatically decide
the contribution of CNN and SSM to the ultimate result
based on their segmentation performance. Furthermore, we
propose a voxel-wise refinement strategy (VRS) that utilizes
an adjustable weighted average to amend the results of CNN
with shape priors. When the VRS is taken into consideration
in fusion, the segmentation of CNN can be more anatomically
correct. Extensive empirical experiments on diverse CNN
backbones demonstrate the effectiveness of our approach on
improving segmentation performance over different metrics. In
the future, we plan to validate our approach on segmentation of
other organs to develop it into an adaptable framework to im-
prove deep learning methods with statistical shape modeling.
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